subject
Physics, 30.07.2019 06:30 natalie2sheffield

What evidence supports the law of conservation of energy?

ansver
Answers: 2

Other questions on the subject: Physics

image
Physics, 21.06.2019 19:10, shazanah95
Athin, square metal plate measures 14 cm on each side and has emissivity of 0.60. the plate is heated to a temperature of 745°c. what is the rate at which the plate radiates energy ? the stefan-boltzmann constant is 5.67 × 10-8 w/(m2 ? k4). remember that the plate will radiate energy from both its top and bottom surfaces.
Answers: 1
image
Physics, 21.06.2019 22:00, baileysosmart
Jason and mia are both running in a race. as they approach the finish line, you being the physicist that you are decide to time how long it takes them to reach the end of the race. when you start your stop watch (you can take this as time t = 0 s) you notice that mia is an unknown distance d ahead of jason and both are moving with the same initial velocity v_0. you also notice that jason is accelerating at a constant rate of a_j, while mia is deaccelerating at a constant rate of -a_m. jason and mia meet each other for the first time at time t = t_1. at this time (t = t_1) jason's velocity is two times that of mia's velocity, meaning v_j (t_1) = 2v_m (t_1). a) draw the position vs. time graph describing mia's and jason's motion from time t = 0 to time t = t_1. clearly label your axes and initial conditions on your graph. b) draw the velocity vs. time graph describing mia and jason's motion from time t = 0s to time t = t_1. clearly label your axes and initial conditions on your graph. c) how long from when the stop watch was started at t = 0s did it take mia and jason to meet? express your answer in terms of know quantities v_0, a_m, and a_j. d) when the stop watch started at time t = 0s, how far apart, d, were mia and jason? express your answer in terms of know quantities v_0, a_m, and a_j.
Answers: 1
image
Physics, 22.06.2019 03:30, nkazmirski5598
Aplane flies a distance d from west to east at a constant speed vp , with respect to the air in a time twe . on the return trip, the plane flies a distance d from east to west at a constant speed vp , with respect to the air in a time tew . on both trips the wind blows from west to east at a constant speed va , with respect to the ground 1) what is tew in terms of vp, va, and d, as needed? tew=dvp tew=dvp+va tew=dva tew=dvpâ’va tew=12dvp tew=12dvp+va tew=12dvpâ’va your submissions: b submitted: saturday, january 26 at 6: 49 pm feedback: feedback will be given once all questions have been attempted and the grade cluster button has been pressed. 2) what is twe in terms of vp, va, and d, as needed? twe=dvp twe=dvp+va twe=dva twe=dvpâ’va twe=12dvp twe=12dvp+va twe=12dvpâ’va your submissions: d submitted: saturday, january 26 at 6: 49 pm feedback: feedback will be given once all questions have been attempted and the grade cluster button has been pressed. 3) assuming d = 2300 miles, vp = 400 miles/hr, and twe = 4 hours, what is va, the speed of the wind with respect to the ground? va = 100 miles/hr va = 575 miles/hr va = 200 miles/hr va = 175 miles/hr va = 975 miles/hr 4) once again, assuming d = 2300 miles, vp = 400 miles/hr, and twe = 4 hours, what is tew, the time it takes the plane to fly a distance d miles from east to west? tew = 5.75 hours tew = 11.5 hours tew = 7.67 hours tew = 8 hours tew = 10.2 hours
Answers: 2
image
Physics, 22.06.2019 07:10, cannan
Search coils and credit cards. one practical way to measure magnetic field strength uses a small, closely wound coil called a search coil. the coil is initially held with its plane perpendicular to a magnetic field. the coil is then either quickly rotated a quarter-turn about a diameter or quickly pulled out of the field. (a) derive the equation relating the total charge q that flows through a search coil to the magnetic-field magnitude b. the search coil has n turns, each with area a, and the flux through the coil is decreased from its initial maximum value to zero in a time ∆t. the resistance of the coil is r, and the total charge is q = i∆t, where i is the average current induced by the change in flux. (b) in a credit card reader, the magnetic strip on the back of a credit card is rapidly “swiped” past a coil within the reader. explain, using the same ideas that underlie the operation of a search coil, how the reader can decode the information stored in the pattern of magnetization on the strip. (c) is it necessary that the credit card be “swiped” through the reader at exactly the right speed? why or why not?
Answers: 2
You know the right answer?
What evidence supports the law of conservation of energy?...

Questions in other subjects:

Konu
Mathematics, 05.11.2020 20:10
Konu
Chemistry, 05.11.2020 20:10
Konu
Mathematics, 05.11.2020 20:10