subject
Physics, 30.12.2019 21:31 sydchann5220

The moon is slowly moving away from the earth, what will eventually happen to the gavitional force between the earth and the moon

ansver
Answers: 3

Other questions on the subject: Physics

image
Physics, 22.06.2019 17:00, griffinkiley22
Two manned satellites approaching one another at a relative speed of 0.550 m/s intend to dock. the first has a mass of 2.50 ✕ 103 kg, and the second a mass of 7.50 ✕ 103 kg. assume that the positive direction is directed from the second satellite towards the first satellite. (a) calculate the final velocity after docking, in the frame of reference in which the first satellite was originally at rest.(b) what is the loss of kinetic energy in this inelastic collision? (c) repeat both parts, in the frame of reference in which the second satellite was originally at rest. final velocity(d) loss of kinetic energy = ?
Answers: 2
image
Physics, 22.06.2019 19:30, CalCDanG
Assume that two of the electrons at the negative terminal have attached themselves to a nearby neutral atom. there is now a negative ion with a charge -2e at this terminal. what are the electric potential and electric potential energy of the negative ion relative to the electron? the electric potential and the electric potential energy are both twice as much. the electric potential is twice as much and the electric potential energy is the same. the electric potential is the same and the electric potential energy is twice as much. the electric potential and the electric potential energy are both the same. the electric potential is the same and the electric potential energy is increased by the mass ratio of the oxygen ion to the electron. the electric potential is twice as much and the electric potential energy is increased by the mass ratio of the oxygen ion to the electron.
Answers: 3
image
Physics, 22.06.2019 20:40, mathman783
Abasketball star covers 2.65 m horizontally in a jump to dunk the ball. his motion through space can be modeled precisely as that of a particle at his center of mass. his center of mass is at elevation 1.02 m when he leaves the floor. it reaches a maximum height of 1.90 m above the floor and is at elevation 0.910 m when he touches down again. (a) determine his time of flight (his "hang time"). (b) determine his horizontal velocity at the instant of takeoff. (c) determine his vertical velocity at the instant of takeoff. (d) determine his takeoff angle. (e) for comparison, determine the hang time of a whitetail deer making a jump with center-of-mass elevations yi = 1.20 m, ymax = 2.45 m, and yf = 0.750 m.
Answers: 1
image
Physics, 22.06.2019 21:20, Animallover100
An electron is ejected into a horizontal uniform e⃗ field at a parallel horizontal velocity of v0. assume the electron's initial position x0, initial velocity v0, time t, magnitude of electric field e, electron's mass m, and the magnitude of the electron's charge |e|. ignore the force that earth exerts on the electron. assume the e⃗ field is in the same direction as the initial velocity. part a define the equation for the electron's velocity. express your answer in terms of the variables v0, |e|, t, e, and m.
Answers: 3
You know the right answer?
The moon is slowly moving away from the earth, what will eventually happen to the gavitional force b...

Questions in other subjects:

Konu
Mathematics, 12.02.2020 03:56
Konu
Business, 12.02.2020 03:56