subject
Physics, 09.03.2021 02:40 Zaynt

A plane loaded with cargo travels 2000 miles at an average speed of 400 Miles per hour. On the return trip on the same route it travels at an average speed of 480 miles per hour. How much quicker was the return trip

ansver
Answers: 2

Other questions on the subject: Physics

image
Physics, 21.06.2019 20:40, cuavang55
In a steady-flow steam power plant system, two adiabatic high-pressure and low-pressure turbines ane used to generate power. superheated steam enters the high-pressure turbine at 8 mpa and 550°c. the steam expands in the high-pressure turbine to a saturated vapor at 3 mpa. in order to increase the powe generation of the power plant, another steam turbine working in a lower pressure ranges is deployed. the outlet vapor from the first turbine is heated up at a boiler to the temperature of 500 c at the constant pressure of first turbine's outlet (3 mpa). then, the vapor enters the second turbine and produces extra work. the exit conditions of the second turbine are 5o kpa and 90 percent quality. if the total power output of the power plant is 25 mw, determine a) the mass flow rate of the water (kg/s). b) heat transfer rate in the boiler (mw). (30 points) 3 mpa 00 c 8 mpa s0 c high pres turbine low pres boiler turbine 50 kpa 3 mpa 09 saturated vapor t heat engine, shown in the figure, operates between high temperature and low temperature of through a heat 4. a carnot tn and tu respectively. this heat engine receives energy from a heat reservoir at t exchanger where the heat transferred is proportional to the temperature difference as ? = k (z,-7, ). it rejects heat at a given low temperature tl. to design the heat engine for maximum work output, find the high temperature, th, as a function of tes and t. (15 points) qe
Answers: 3
image
Physics, 21.06.2019 23:00, desiwill01
We want to calculate the total metabolic heat generated by a singing canary taking into account heat transfer by radiation, convection and exhaling air. the air temperature is 20 oc, canary’s body internal and surface temperature is 33oc, external body surface convective heat transfer coefficient is 25.2 w/m2 .k, temperature difference between the inhaled and exhaled air is 4.3 oc, the ventilation rate is 0.74 cc of air per second, specific heat of air is 1.0066 kj/kg. k and density of air is 1.16 kg/m3 . assume the canary’s body to be a cylinder with 7 cm diameter and 9 cm length, and heat exchange is from the side as well as the top and bottom of cylinder. calculate 1) the net rate of heat lost by radiation, assuming heat gained by the bird through radiation from the surroundings is 11.5 w; 2) rate of heat transferred by convection to the surrounding air; 3) rate of heat transferred in the exhaling air without considering any internal evaporation; 4) total metabolic power.
Answers: 2
image
Physics, 22.06.2019 08:40, tasniahussain21
The system is released from rest with the cable taut, and the homogeneous cylinder does not slip on the rough incline. determine the angular acceleration of the cylinder and the minimum coeffi cient s of friction for which the cylinder will not slip.
Answers: 2
image
Physics, 22.06.2019 08:40, Hazeleyes13
An isolated conducting spherical shell carries a positive charge. part a which statement (or statements) about the electric field and the electric potential inside and outside the spherical shell is correct? which statement (or statements) about the electric field and the electric potential inside and outside the spherical shell is correct? electric potential inside the shell is constant and outside the shell is changing as 1/r2 both the electric potential and the electric field does change with r inside and outside the spherical shell electric potential inside and outside the shell is constant, but not zero electric potential inside the shell is constant and outside the shell is equal to zero electric field inside and outside the shell is constant (does not change with the position r), but is not equal to zero electric field inside and outside the shell is changing as 1/r (where r is the distance from the center of the sphere) electric field inside is equal to zero and outside the shell is constant, but not zero electric potential inside the shell is constant and outside the shell is changing as 1/r electric field inside and outside the shell is changing as 1/r2 electric field inside is equal to zero and outside the shell is changing as 1/r2 electric field inside and outside the shell is zero electric field inside is constant and outside the shell is changing as 1/r
Answers: 3
You know the right answer?
A plane loaded with cargo travels 2000 miles at an average speed of 400 Miles per hour. On the retur...

Questions in other subjects:

Konu
Mathematics, 29.11.2020 19:30