subject
Physics, 11.01.2021 21:30 allisonatalie6654

This question is a long free response question. Please show all work. I AM GIVING 3 TIMES THE POINTS FOR THIS QUESTION AND I WILL GIVE BRAINLIEST SO PLEASE RESPOND ASAP WITH GOOD ANSWERS.

A spring-loaded launcher can be securely attached to a tabletop. When the spring is at its uncompressed length, the plunger is in the position shown above in Figure 1. A small wood block can be pressed against the end of the plunger, compressing the spring a distance L , as shown in Figure 2. When the block is released, the plunger pushes the block along the tabletop. Two pins are attached to the edge of the table to prevent the plunger from extending beyond the table. When the plunger hits the pins, the block then leaves the table. There is nonnegligible friction between the block and the tabletop.

The launcher can be moved closer to or farther from the edge of the tabletop. Students set up tables 1 and 2, as shown above, with tabletops that are made of the same material. On table 1, the launcher is positioned so that the distance s=A between the launcher and the edge of the tabletop is slightly less than L. On table 2, the launcher is positioned so that the distance s=B between the launcher and the edge of the tabletop is significantly less than L. On both tables, the block is released from rest and loses contact with the plunger at the moment the plunger reaches the pins. Tables 1 and 2 are the same height.

k is the spring constant of the spring.
m is the mass of the block.
L is the distance the spring is compressed.
μ (mu) is the coefficient of kinetic friction between the block and the tabletop.
s is the distance between the launcher and the edge of the tabletop.

(a) Without manipulating equations, explain why the block launched from table 1 could land farther from the table than the block launched from table 2 does.

(b) Does the block launched from table 1 spend more, less, or the same amount of time in the air than the block launched from table 2 does? Explain your reasoning.

(c) Consider the Earth-block system. Determine the change, if any, in the total mechanical energy of the system from the instant the block leaves the table to the instant immediately before it reaches the ground.

The students correctly derive an equation for the horizontal distance D from the edge of the tabletop that the block lands, in terms of s (the distance between the launcher and the edge of the tabletop):

Note: the u in the above equation is actually a μ but the formula maker in doesn't like that.
where t is the time interval between the instant the block leaves the table and the instant immediately before it reaches the ground.

(d) Does this equation for D support your argument from part (a) that the block launched from table 1 could land farther from the table than the block launched from table 2? Briefly explain why or why not.

(e) The students now use the same setups to launch blocks that are identical to each other but more massive than the original blocks. The blocks are made of the same material as the original blocks. Does this change in the mass of the blocks make it more likely or less likely that the block launched from table 1 goes farther than the block launched from table 2 does? Briefly explain your reasoning.

(f) Two students each try to sketch a graph of the kinetic energy of the block as a function of its position from launch to the time the block reaches the edge of the table. Their graphs are shown above. Which graph best represents the kinetic energy of the block? Justify your selection.


D = t\sqrt{\frac{k}{m} * (2Ls - (s*s) - 2ugs }

ansver
Answers: 3

Other questions on the subject: Physics

image
Physics, 22.06.2019 04:00, scbmaster351
1. a student believes that colder water makes fish swim faster. he sets up an experiment using different temperatures of water and measures the speed of the fish. (chapter 1 – page 9) a. what is the independent variable? b. what is the dependent variable? c. list two constants the student should have for this experiment. 2. convert 0.375 mg to grams. show your work with units in order to receive credit. (chapter 1 – page 16) 3. a race car drives one lap around a race track that is 500 meters in length. (chapter 2 – pages 45-46) a. what is the driver’s displacement at the end of the lap? b. how is his displacement different from the distance traveled? 4. how far does a car travel in 90 seconds if it is traveling at a speed of 55 m/s? show the appropriate equation from your textbook and show your work with units in order to receive credit. (chapter 2 – pages 46-47) 5. two cars, both with a mass of 500 kg, are traveling down a road. the first car has a velocity of 65 m/s east and the second car has a velocity of 85 m/s west. (chapter 2 – pages 54-55) a. calculate the momentum of both cars showing the appropriate equation from your textbook and your work with units in order to receive credit. b. which car has the larger momentum? explain how you know. 6. an airplane traveling at 60 m/s comes to a stop in 10 seconds. calculate the airplane’s acceleration. show the appropriate formula and show your work with units in order to receive credit. (chapter 2 – pages 57-58) 7. an individual has a weight of 735 newtons. what is the individual’s mass? show the appropriate equation from your book and show your work with the units in order to receive credit. (chapter 3 – pages 78-79) 8. in terms of newton’s first law of motion, explain why it is important to wear a seatbelt while riding in a car. (chapter 3 – page 86) 9. if you kick a tennis ball with 50 n of force and then kick a soccer ball with 50 n of force, explain the difference in their motion according to newton’s second law. (chapter 3 – pages 81-82) 10. describe how the velocity and acceleration of a skydiver changes as she falls from the plane back to the ground. (chapter 3 – pages 88-89) 11. a child is swinging on swing. describe what happens to both the kinetic energy and potential energy of the child as she swings up and down. (chapter 4 – pages 123) 12. driving to work one morning, you get a flat tire. when using the car jack, you apply 120 n of force to the jack and the jack in turn applies 2000 n of force to lift the car up. what is the mechanical advantage of the jack? (chapter 4 – page 111) 13. a temperature of a 50 kg block increases by 15°c when 337,500 j of thermal energy are added to the block. (chapter 5 – pages 141-142) a. what is the specific heat of the object? show the appropriate equation from your book and show your work with units. b. what is the block made of? use the chart on page 141. c. is this block a good material for insulators or conductors? 14. explain why gases make better thermal insulators than solids or liquids. give one example from the textbook of a thermal insulator that can keep you warm on a cold day. (chapter 5 – pages 147) 15. several days after a snowfall, the roofs of some homes on your street have almost no snow on them, while the roofs on other homes are still snow covered. assuming they have all received the same amount of sunlight, give one reason for this observation related to thermal energy and insulation. 16. if you purchased a string of lights, how could you determine if the lights were wired in series or parallel? (chapter 6 – pages 185-186) 17. what happens to the current in a device if the resistance is decreased but the voltage stays the same? (chapter 6 – pages 181-182) 18. you measure the voltage difference of a circuit to be 15 v and the resistance to be 675 ω. what is the current in the circuit? show the appropriate equation from your book and show your work with units. (chapter 6 – page 182) 19. explain why a magnet from your refrigerator could not be used to lift something as heavy as a car. (chapter 7 – pages 202-203)
Answers: 3
image
Physics, 22.06.2019 04:30, loloi83
Acrow drops a 0.11kg clam onto a rocky beach from a height of 9.8m. what is the kinetic energy of the clam when it is 5.0m above the ground? what is its speed at that point?
Answers: 1
image
Physics, 22.06.2019 10:00, omgomglol
Your town is considering building a biodiesel power plant describe at least two advantages and two disadvantages
Answers: 1
image
Physics, 22.06.2019 13:30, livingfamyboys35
The period of a pendulum varies directly as the square root of the length of the pendulum and inversely as the square root of the acceleration due to gravity. find the period when the length is 144 cm and the acceleration due to gravity is 980 cm per second squared, if the period is 7pi seconds when the length is 289 cm and the acceleration due to gravity is 980 cm per second squared.
Answers: 2
You know the right answer?
This question is a long free response question. Please show all work. I AM GIVING 3 TIMES THE POINT...

Questions in other subjects:

Konu
Mathematics, 11.05.2021 21:40
Konu
Physics, 11.05.2021 21:40