subject
Physics, 19.11.2020 08:10 gardinerr410

How does the gravitational force that Mars exerts on Sam, an astronaut on the surface of mars, compared to the gravitational force that Sam exerts on Mars? a) The gravitational force depends on where Sam stands on Mars
b) The gravitational force they exert on each other is equal
c) Sam exerts a greater gravitational force on Mars
d) Mars exerts a greater gravitational force on Sam

ansver
Answers: 1

Other questions on the subject: Physics

image
Physics, 21.06.2019 22:00, baileysosmart
Jason and mia are both running in a race. as they approach the finish line, you being the physicist that you are decide to time how long it takes them to reach the end of the race. when you start your stop watch (you can take this as time t = 0 s) you notice that mia is an unknown distance d ahead of jason and both are moving with the same initial velocity v_0. you also notice that jason is accelerating at a constant rate of a_j, while mia is deaccelerating at a constant rate of -a_m. jason and mia meet each other for the first time at time t = t_1. at this time (t = t_1) jason's velocity is two times that of mia's velocity, meaning v_j (t_1) = 2v_m (t_1). a) draw the position vs. time graph describing mia's and jason's motion from time t = 0 to time t = t_1. clearly label your axes and initial conditions on your graph. b) draw the velocity vs. time graph describing mia and jason's motion from time t = 0s to time t = t_1. clearly label your axes and initial conditions on your graph. c) how long from when the stop watch was started at t = 0s did it take mia and jason to meet? express your answer in terms of know quantities v_0, a_m, and a_j. d) when the stop watch started at time t = 0s, how far apart, d, were mia and jason? express your answer in terms of know quantities v_0, a_m, and a_j.
Answers: 1
image
Physics, 22.06.2019 02:00, llamasking
Chapter 23, problem 075 the figure shows a geiger counter, a device used to detect ionizing radiation (radiation that causes ionization of atoms). the counter consists of a thin, positively charged central wire surrounded by a concentric, circular, conducting cylindrical shell with an equal negative charge. thus, a strong radial electric field is set up inside the shell. the shell contains a low-pressure inert gas. a particle of radiation entering the device through the shell wall ionizes a few of the gas atoms. the resulting free electrons (e) are drawn to the positive wire. however, the electric field is so intense that, between collisions with gas atoms, the free electrons gain energy sufficient to ionize these atoms also. more free electrons are thereby created, and the process is repeated until the electrons reach the wire. the resulting "avalanche" of electrons is collected by the wire, generating a signal that is used to record the passage of the original particle of radiation. suppose the radius of the central wire is 24 âµm, the inner radius of the shell 2.3 cm, and the length of the shell 14 cm. if the electric field at the shell's inner wall is 2.8 ă— 104 n/c, what is the total positive charge on the central wire?
Answers: 1
image
Physics, 22.06.2019 04:00, Tirone
However, had it been a real sound, the sound's pitch would have been increased by the doppler effect, since the falcon was moving the source of the sound. perpendicular to away from towards at the same speed as
Answers: 1
image
Physics, 22.06.2019 04:30, AShevel6767
In a system, when potential energy decreases, then entropy also decreases. true false
Answers: 3
You know the right answer?
How does the gravitational force that Mars exerts on Sam, an astronaut on the surface of mars, compa...

Questions in other subjects:

Konu
Geography, 31.03.2020 00:15