subject
Physics, 18.10.2020 22:01 leeleelynn

The pendulum, in a wall clock, is a 'seconds pendulum', i. e., has a time period of 2s. The 'effective length' of a simple pendulum, that has the same time period, is nearly

ansver
Answers: 1

Other questions on the subject: Physics

image
Physics, 21.06.2019 22:30, droidd133
Fft review: linspace, fs, fftshift, nfft 1. generate one second of a cosine of w,-10hz sampled at f, = 100hz and assign it to x. define a tt as your time axis 2. take 64 points fft. 3. as you remember, the dft (which the fft implements) computes n samples of s2t where k-0,1,2, n -1. plot the magnitude of this 64-points fft at range 0 to 63, what do you think of this graph? 4â·to get the x-axis into a hz-frequency form, plot this 64-points fft between-50 to 50 (the 100hz sampling rate) and have n-points between them. 5. according to your figure, what frequency is this cosine wave at? 6. remember that the fft is evaluating from 0 to 2ď€. we are used to viewing graphs from-ď€ to ď€. therefore, you need to shift your graph. 7. now according to your shifted graph. what frequency is this at? 8. note that the spikes have long drop-offs? try a 1024-point dft. note that the peak is closer to 10 and the drop-off is quicker. although, now sidelobes are an issue
Answers: 2
image
Physics, 21.06.2019 23:20, ElizabethF
Asmall, positively charged ball is moved close to a large, positively charged ball. which describes how the small ball likely responds when it is released? it will move toward the large ball because like charges repel. it will move toward the large ball because like charges attract. it will move away from the large ball because like charges repel. it will move away from the large ball because like charges attract.
Answers: 3
image
Physics, 22.06.2019 02:10, kernlife
Astudent is performing an experiment comparing sound and light waves. the student gathers the following data. what conclusion does the student most likely make based on this data? light waves always travel the same speed; however, the speed of sound is determined by the medium that it travels through. all sound waves always have the same energy, so the temperature of the medium does not affect wave speed. light needs to vibrate particles, so it travels fastest in tightly packed solids, while sound does not need a medium, so it travels fastest in a gas. tightly packed particles in solids slow down the light waves; however, sound waves make particles bounce into each other, so they travel faster in solids.
Answers: 3
image
Physics, 22.06.2019 14:00, eden1017
Estimate the change in the gibbs energy and molar gibbs energy of 1.0dm3 of octane when the pressure acting on it is increased from 1.0 atm to 100 atm. the mass density of octane is 0.703 g cm−3
Answers: 3
You know the right answer?
The pendulum, in a wall clock, is a 'seconds pendulum', i. e., has a time period of 2s. The 'effecti...

Questions in other subjects: