subject
Physics, 21.04.2020 17:30 cjtambasco

A rope, under a tension of 254 N and fixed at both ends, oscillates in a second-harmonic standing wave pattern. The displacement of the rope is given by . where at one end of the rope, is in meters, and is in seconds. What are (a) the length of the rope, (b) the speed of the waves on the rope, and (c) the mass of the rope

ansver
Answers: 1

Other questions on the subject: Physics

image
Physics, 21.06.2019 17:20, gymer630
American eels (anguilla rostrata) are freshwater fish with long, slender bodies that we can treat as uniform cylinders 1.0 m long and 10 cm in diameter. an eel compensates for its small jaw and teeth by holding onto prey with its mouth and then rapidly spinning its body around its long axis to tear off a piece of flesh. eels have been recorded to spin at up to 14 revolutions per second when feeding in this way. although this feeding method is costly in terms of energy, it allows the eel to feed on larger prey than it otherwise could. 1.a field researcher uses the slow-motion feature on her phones camera to shoot a video of an eel spinning at its maximum rate. the camera records at 120 frames per second. through what angle does the eel rotate from one frame to the next? 2. the eel is observed to spin at 14 spins per second clockwise, and 10 seconds later it is observed to spin at 8 spins per second counterclockwise. what is the magnitude of the eels average angular acceleration during this time? 3. the eel has a certain amount of rotational kinetic energy when spinning at 14 spins per second. if it swam in a straight line instead, about how fast would the eel have to swim to have the same amount of kinetic energy as when it is spinning? 4.a new species of eel is found to have the same mass but one-quarter the length and twice the diameter of the american eel. how does its moment of inertia for spinning around its long axis compare to that of the american eel?
Answers: 1
image
Physics, 21.06.2019 22:50, Jasten
A23 kg log of wood begins from rest, 300 m up a sluice (a water track used to transport logs, think of it as an inclined plane with negligible friction) inclined at 20° to the horizontal. after it reaches the flat waterway at the bottom it collides elastically with a 100 kg block of wood initially at rest near the base of the incline. (a) how long does it take the 23 kg log to travel down the incline? (b) what is the speed of the 23 kg log at the bottom of the incline? (c) what are the velocities of both blocks of wood after the collision? (d) what is the total kinetic energy before the collision? (e) what is the kinetic energy of the 23 kg log after the collision? (f) what is the kinetic energy of the 100 kg block of wood after the collision? (g) what is the total kinetic energy after the collision? (h) compare the total initial and total final kinetic energies. is this consistent with what you would expect for elastic collisions? explain!
Answers: 1
image
Physics, 22.06.2019 10:00, sofiaisabelaguozdpez
Two objects of different mass start from rest, are pulled by the same magnitude net force, and are moved through the same distance. the work done on object 1 is 900 j. after the force has pulled each object, object 1 moves twice as fast as object 2. how much work is done on object 2?
Answers: 1
image
Physics, 22.06.2019 13:00, caleb1009
At a certain instant after jumping from the airplane a, a skydiver b is in the position shown and has reached a terminal (constant) speed vb = 52 m/s. the airplane has the same constant speed va = 52 m/s, and after a period of level flight is just beginning to follow the circular path shown of radius ρa = 2330 m. (a) determine the velocity and acceleration of the airplane relative to the skydiver. (b) determine the time rate of change of the speed vr of the airplane and the radius of curvature ρr of its path, both as observed by the nonrotating skydiver.
Answers: 3
You know the right answer?
A rope, under a tension of 254 N and fixed at both ends, oscillates in a second-harmonic standing wa...

Questions in other subjects:

Konu
Mathematics, 22.07.2019 02:01
Konu
Mathematics, 22.07.2019 02:01