subject
Physics, 02.03.2020 17:15 Tracic1972

An airplane is flying on a compass heading (bearing) of 320 at 335 mph. A wind is blowing with the bearing 300degrees at 50 mph. (a) Find the component form of the velocity of the airplane. (b) Find the actual ground speed and direction of the plane.

ansver
Answers: 2

Other questions on the subject: Physics

image
Physics, 21.06.2019 17:30, joanna3895
What is the difference between electrically neutral objects and electrically charged objects
Answers: 2
image
Physics, 22.06.2019 00:30, powberier6979
Consider an ordinary, helium-filled party balloon with a volume of 2.2 ft3. the lifting force on the balloon due to the outside air is the net resultant of the pressure distribution exerted on the exterior surface of the balloon. using this fact, we can derive archimedes’ principle, namely that the upward force on the balloon is equal to the weight of the air displaced by the balloon. assuming that the balloon is at sea level, where the air density is 0.002377 slug/ft3, calculate the maximum weight that can be lifted by the balloon. note: the molecular weight of air is 28.8 and that of helium is 4.
Answers: 2
image
Physics, 22.06.2019 04:50, andrewsaul04
The position of a crate sliding down a ramp is given by x=(0.05t^3) m, y=(1.7t^2) m, z=(6−0.85t^5/2) m, where t is in seconds. (a) determine the magnitude of the crate's velocity when t = 2 s. (b) determine the magnitude of the crate's acceleration when t = 2 s.
Answers: 2
image
Physics, 22.06.2019 06:00, jagmeetcheema
The frequency of vibrations of a vibrating violin string is given by f = 1 2l t ρ where l is the length of the string, t is its tension, and ρ is its linear density.† (a) find the rate of change of the frequency with respect to the following. (i) the length (when t and ρ are constant) (ii) the tension (when l and ρ are constant) (iii) the linear density (when l and t are constant) (b) the pitch of a note (how high or low the note sounds) is determined by the frequency f. (the higher the frequency, the higher the pitch.) use the signs of the derivatives in part (a) to determine what happens to the pitch of a note for the following. (i) when the effective length of a string is decreased by placing a finger on the string so a shorter portion of the string vibrates df dl 0 and l is ⇒ f is ⇒ (ii) when the tension is increased by turning a tuning peg df dt 0 and t is ⇒ f is ⇒ (iii) when the linear density is increased by switching to another string df dρ 0 and ρ is ⇒ f is ⇒
Answers: 3
You know the right answer?
An airplane is flying on a compass heading (bearing) of 320 at 335 mph. A wind is blowing with the b...

Questions in other subjects: