subject
Physics, 18.02.2020 20:26 xman32201

Describe what is happening at the cascade range?

ansver
Answers: 1

Other questions on the subject: Physics

image
Physics, 21.06.2019 18:30, angiebailey1605
A10.0 kg cart and a 15kg cart are locked together with a compressed spring between them. they are then released so that the spring pushes the two carts apart. the 10.0 kg cart is moving at 4.5 m/s afterward. how fast is the 15kg cart moving? 3.0 m/s 2.0 m/s 4.5 m/s 5.0 m/s
Answers: 1
image
Physics, 22.06.2019 00:20, u8p4
Consider the particle-in-a-box problem in 1d. a particle with mass m is confined to move freely between two hard walls situated at x = 0 and x = l. the potential energy function is given as (a) describe the boundary conditions that must be satisfied by the wavefunctions ψ(x) (such as energy eigenfunctions). (b) solve the schr¨odinger’s equation and by using the boundary conditions of part (a) find all energy eigenfunctions, ψn(x), and the corresponding energies, en. (c) what are the allowed values of the quantum number n above? how did you decide on that? (d) what is the de broglie wavelength for the ground state? (e) sketch a plot of the lowest 3 levels’ wavefunctions (ψn(x) vs x). don’t forget to mark the positions of the walls on the graphs. (f) in a transition between the energy levels above, which transition produces the longest wavelength λ for the emitted photon? what is the corresponding wavele
Answers: 1
image
Physics, 22.06.2019 16:50, boopiee2349
Which best describes the first law of thermodynamics as compared to the second law of thermodynamics? a. the first law describes how thermal energy is conserved but not the direction it moves. b. the first law describes the direction thermal energy moves but not how it is conserved. c. the first law describes how thermal energy can be created but not how it can be destroyed. d. the first law describes how thermal energy can be destroyed but not how it can be created.
Answers: 1
image
Physics, 22.06.2019 17:20, Queenhagar
In a system with only a single force acting upon a body, what is the relationship between the change in kinetic energy and the work done by the force? answers: work is equal to the change in kinetic energy. work depends on the square of the change in potential energy. work is equal to the negative of the change in kinetic energy. work is equal to the square of the change in kinetic energy
Answers: 2
You know the right answer?
Describe what is happening at the cascade range?...

Questions in other subjects: