subject
Engineering, 08.09.2021 14:00 hannahbannana98

The statements given below are folowed by three conditions. Altime the statements are true, owen if they contradict in facts, and determine the condusion/'s that follow's from the statement logicaly,

ansver
Answers: 3

Other questions on the subject: Engineering

image
Engineering, 04.07.2019 19:10, gabrielaperezcz
Air inially occupying a volume of 1 m2 at 100 kpa, 27 c undergoes three internally reversible processes in series. process 1-2 compression to 500 kpa during which pv constant process 2-3 adiabatic expanslon to 100 kpa process 3-1: constant-pressure expansion to 100 kpa (a) calculate the change of entropy for each of the three processes. (b) calculate the heat and work involved in each process. (c) is this cycle a power cycle or refrigeration cycle?
Answers: 3
image
Engineering, 04.07.2019 19:10, Lexi5170
A)-explain briefly the importance of standards in engineering design. b)- what is patent? c)-explain the relationship between these standards: b. s. and b. s.en d)- in engineering design concepts, types of loads and how they act are important factors. explain.
Answers: 3
image
Engineering, 04.07.2019 19:10, thawkins79
Agas contained within a piston-cylinder assembly e end nation about same energy states, 1 and 2, where pi 10 bar, v undergoes two processes, a and b, between the sam 0.1 m3, ui-400 kj and p2 1 bar, v2 1.0 m2, u2 200 kj: process a: process from 1 to 2 during which the pressure- volume relation is pv constant process b: constant-volume process from state 1 to a pressure of 2 bar, followed by a linear pressure-volume process to +20 0 state 2 kinetic and potential energy effects can be ignored. for each of the processes a and b, (a) sketch the process on p-v coordinates, (b) evaluate the work, in kj, and (c) evaluate process the heat transfer, in kj
Answers: 2
image
Engineering, 04.07.2019 19:20, anggar20
Air enters a horizontal, constant-diameter heating duct operating at steady state at 290 k, 1 bar, with a volumetric flow rate of 0.25 m°/s, and exits at 325 k, 0.95 bar. the flow area is 0.04 m2. assuming the ideal gas model with k = 1.4 for the air, determine (a) the velocity at the inlet and exit, each in m/s, and (c) the rate of heat transfer, in kw flow rate, in kg/s, (b) the mass kg 0.3
Answers: 2
You know the right answer?
The statements given below are folowed by three conditions. Altime the statements are true, owen if...

Questions in other subjects:

Konu
Mathematics, 19.11.2020 01:00
Konu
Mathematics, 19.11.2020 01:00