subject
Engineering, 18.11.2020 23:00 diegop07

I need a girlfriend please

ansver
Answers: 3

Other questions on the subject: Engineering

image
Engineering, 04.07.2019 18:20, samantha636
Avolume of 2.65 m3 of air in a rigid, insulated container fitted with a paddle wheel is initially at 264 k, 5.6 bar. the air receives 432 kj by work from the paddle wheel. assuming the ideal gas model with cv = 0.71 kj/kg • k, determine for the air the amount of entropy produced, in kj/k
Answers: 2
image
Engineering, 04.07.2019 18:20, cristykianpour
Describe one experiment in which the glass transition temperature and melting temperature of a totally amorphous thermoplastic material can be determined. show the relevant experimental results in a diagram which should be properly annotated with the two temperatures clearly marked. what is likely to happen to the curve in the diagram if the amorphous polymer is replaced by a thermosetting type?
Answers: 2
image
Engineering, 06.07.2019 03:10, cicimarie2018
What is the direction and how to operate the lathe?
Answers: 2
image
Engineering, 06.07.2019 04:10, keke6361
Consider a power plant with water as the working fluid that operates on an ideal rankine cycle. it has a net power output of 45mw. superheated steam enters the turbine at 7mpa and 500°c (h=3411.4 kj/kg; s=6.8 kj/kg k) and is cooled in the condenser at a pressure of 10 kpa by running cooling water from a lake through the tubes of the condenser at a rate of 2000 kg/s. (a) show the cycle on a t-s diagram (a right schematic is fine - you do not need to calculate the temperatures at each point); (b)-determine the work done by the turbine and the pump in kj/kg; (c)-the mass flow rate of water used by the power plant; (d)-the thermal efficiency of the cycle; (e)-the temperature rise of the cooling water. assume the cooling water is incompressible with cp 4.18 kj/kg°c.
Answers: 3
You know the right answer?
I need a girlfriend please...

Questions in other subjects:

Konu
Mathematics, 03.12.2021 01:20
Konu
Social Studies, 03.12.2021 01:20