subject
Engineering, 08.10.2020 09:01 abhibhambhani

A steam power plant design consists of an ideal Rankine cycle with reheat and regeneration. Steam enters Turbine 1 at P1 and T1 at the rate of m1 and exits at P2. A fraction (y') of the steam exiting Turbine 1 is diverted to a closed feedwater heater while the remainder is reheated to T3 before entering Turbine 2. A fraction (y'') of the steam exiting Turbine 2 at P4 is diverted to an open feedwater heater while the remainder enters Turbine 3. The exit of Turbine 3 is fed into a condenser that operates at P5. Saturared liquid exits the condenser and is fed to Pump 1. The outlet of Pump 1 is fed into the open feedwater heater. Saturated liquid exits the open feedwater heater and is fed to Pump 2. The outlet of pump 2 is fed to the closed feedwater heater. Saturated liquid exits the low pressure output of the closed feedwater heater and is fed through a steam trap to the open feedwater heater. Both exits of the closed feedwater heater are at the same temperature. All turbines and pumps are isentropic.--Given Values--m1 (kg/s) = 50P1 (Bar) = 160T1 (oC) = 640P2 (Bar) = 10T3 (C) = 600P4 (Bar) = 1P5 (Bar) = 0.06a) Determine the specific enthalpy (kJ/kg) at the inlet of turbine 1. Your Answer = Correct! Exact Answer= 3573.50 +/- 1.16E+00b) Determine the specific enthalpy (kJ/kg) at the exit of turbine 1. Your Answer =c) Determine the specific enthalpy (kJ/kg) at the inlet of turbine 2 . Your Answer =d) Determine the specific enthalpy (kJ/kg) at the exit of turbine 2. Your Answer =e) Determine the specific enthalpy (kJ/kg) at the condenser exit. Your Answer =f) Determine the specific enthalpy (kJ/kg) at the exit of the low pressure pump. Your Answer =g) Determine the specific enthalpy (kJ/kg) at the exit of the feedwater heater. Your Answer =h) Determine the specific enthalpy (kJ/kg) at the exit of the high pressure pump. Your Answer =i) Determine the fraction (y') of flow diverted to the open feedwater heater. Your Answer =j) Determine the power (MW) produced by turbine 1. Your Answer =k) Determine the power (MW) produced by turbine 2. Your Answer =l) Determine the power (kW) required (a positive number) by the low pressure pump. Your Answer =m) Determine the power (kW) required (a positive number) by the high pressure pump. Your Answer =n) Determine the total rate of heat transfer (MW) supplied to the boiler. Your Answer =o) Determine the thermal efficiency (%) of the power plant. Your Answer =

ansver
Answers: 3

Other questions on the subject: Engineering

image
Engineering, 04.07.2019 18:10, kevin72836
Consider a large isothermal enclosure that is maintained at a uniform temperature of 2000 k. calculate the emissive power of the radiation that emerges from a small aperture on the enclosure surface. what is the wavelength ? , below which 10% of the emission is concentrated? what is the wavelength ? 2 above which 10% of the emission is concentrated? determine the wavelength at which maximum spectral emissive power occurs. what is the irradiation incident on a small object placed inside the enclosure?
Answers: 2
image
Engineering, 04.07.2019 18:10, tobyhollingsworth178
Which from the following instrument is commonly used to detect the high pitch butzing sound in bearings? [clo4] a)-digital ultrasonic meter b)-infrared camera c)-spectroscopic d)-vibrometer
Answers: 2
image
Engineering, 04.07.2019 18:20, kodyclancy
Aquick transition of the operating speed of a shaft from its critical speed will whirl amplitude. (a) increase (b) limit (c) not affect (d) zero
Answers: 2
image
Engineering, 04.07.2019 18:20, 3076850
Prove the equivalence between the two statements of the 2nd law of thermodynamics (i. e., a violation of one statement leads to the violatio the other statement)
Answers: 2
You know the right answer?
A steam power plant design consists of an ideal Rankine cycle with reheat and regeneration. Steam en...

Questions in other subjects:

Konu
Mathematics, 17.12.2021 08:40
Konu
Mathematics, 17.12.2021 08:40
Konu
English, 17.12.2021 08:40