subject
Engineering, 06.05.2020 23:10 Machuco127

A completely reversible heat pump produces heat at a rate of 300 kW to warm a house maintained at 24 °C. The exterior air, which is at 7 °C, serves as the source. Calculate the rate of entropy change of the two reservoirs and determine if this heat pump satisfies the second law according to the increase of entropy principle.

ansver
Answers: 1

Other questions on the subject: Engineering

image
Engineering, 04.07.2019 18:10, heidiburgos1own6c0
Fluids at rest possess no flow energy. a)- true b)- false
Answers: 3
image
Engineering, 04.07.2019 18:10, anna22684
Water at 70°f and streams enter the mixing chamber at the same mass flow rate, determine the temperature and the quality of the exiting stream. 0 psia is heated in a chamber by mixing it with saturated water vapor at 20 psia. if both streams enters the mixing chamber at the same mass flow rate, determine the temperature and the quality of the existing system.
Answers: 2
image
Engineering, 04.07.2019 18:10, Tyrant4life
Draw the engineering stress-strain curve for (a) bcc; (b) fcc metals and mark important points.
Answers: 1
image
Engineering, 04.07.2019 18:10, demarcuswiseman
Calculate the bore of a cylinder that has a stroke of 18 inches and an extension time of 6 seconds at a flow rate of 4 gal/min.
Answers: 3
You know the right answer?
A completely reversible heat pump produces heat at a rate of 300 kW to warm a house maintained at 24...

Questions in other subjects:

Konu
Mathematics, 24.03.2021 01:00
Konu
Biology, 24.03.2021 01:00