subject
Engineering, 06.05.2020 03:32 vladisking888

Water (cp = 4180 J/kg·°C) enters the 2.5 cm internal diameter tube of a double-pipe counter-flow heat exchanger at 17°C at a rate of 1.8 kg/s. Water is heated by steam condensing at 120°C (hfg = 2203 kJ/kg) in the shell. If the overall heat transfer coefficient of the heat exchanger is 700 W/m2 ·°C, determine the length of the tube required in order to heat the water to 80°C using (a) the LMTD method, and (b) the –NTU method. Answers: 129.5 m; 129.6 m

ansver
Answers: 3

Other questions on the subject: Engineering

image
Engineering, 03.07.2019 23:20, abbz13
Two technicians are discussing the intake air temperature (iat) sensor. technician a says that the computer uses the iat sensor as a backup to the engine coolant temperature (ect) sensor. technician b says that the powertrain control module (pcm) will subtract the calculated amount of fuel if the air measures hot. who is correct
Answers: 3
image
Engineering, 04.07.2019 18:10, genyjoannerubiera
Assuming compressible flow of air and that the measurements are done at flagstaff a pitot static tube that gives the difference of total and static pressure measures 0.35 m of mercury. what is the velocity of air? assume the temperature to be 300k. (submit your excel or matlab calculation sheet)
Answers: 1
image
Engineering, 04.07.2019 18:20, rocio5649
Amixture of slurry and mud is to be pumped through a horizontal pipe of diameter 500 mm. the fluid behaves as a bingham plastic with a yield stress of 30 pa and viscosity 0.04 pa. s. describe the effects of the shear stress through a transverse section of the pipe by plotting the variation in shear stress and velocity profile: (i) just before the slurry starts to move (ii) as the slurry flows when the pressure gradient is double that in part (i)
Answers: 3
image
Engineering, 04.07.2019 19:10, gabrielaperezcz
Air inially occupying a volume of 1 m2 at 100 kpa, 27 c undergoes three internally reversible processes in series. process 1-2 compression to 500 kpa during which pv constant process 2-3 adiabatic expanslon to 100 kpa process 3-1: constant-pressure expansion to 100 kpa (a) calculate the change of entropy for each of the three processes. (b) calculate the heat and work involved in each process. (c) is this cycle a power cycle or refrigeration cycle?
Answers: 3
You know the right answer?
Water (cp = 4180 J/kg·°C) enters the 2.5 cm internal diameter tube of a double-pipe counter-flow hea...

Questions in other subjects:

Konu
Mathematics, 14.09.2021 22:40
Konu
Mathematics, 14.09.2021 22:40