subject
Engineering, 20.04.2020 22:41 notcollin2416

Calculate the diffusion current density for the following carrier distributions. For electrons, use Dn = 35 cm2/s and for holes, use Dp = 10 cm2/s. a. ; Jn = b. , at x = 0: Jp (0) = c. , at x = 2.5 µm: Jp (2.5 µm) = d. , at x = 20 µm: Jp (20 µm) = e. , at x = 5 µm: Jn (5 µm) = n (x) = (1010 cm−3 ) 5 μm − x 5 μm

ansver
Answers: 1

Other questions on the subject: Engineering

image
Engineering, 03.07.2019 19:30, 10040813
When using the ohmmeter function of a digital multimeter, the leads are placed in what position relative to the component being tested? a. parallel b. control c. series d. line
Answers: 3
image
Engineering, 04.07.2019 18:10, viicborella
Steel is coated with a thin layer of ceramic to protect against corrosion. what do you expect to happen to the coating when the temperature of the steel is increased significantly? explain.
Answers: 1
image
Engineering, 04.07.2019 18:20, yasyyas646646
Agas mixture consists of 8 kmol of h2 and 2 kmol of n2. determine the mass of each gas and the apparent gas constant of the mixture.
Answers: 3
image
Engineering, 04.07.2019 19:10, pedropaulofpedrosapp
Tom is having a problem with his washing machine. he notices that the machine vibrates violently at a frequency of 1500 rpm due to an unknown rotating unbalance. the machine is mounted on 4 springs each having a stiffness of 10 kn/m. tom wishes to add an undamped vibration absorber attached by a spring under the machine the machine working frequency ranges between 800 rpm to 2000 rpm and its total mass while loaded is assumed to be 80 kg a) what should be the mass of the absorber added to the machine so that the natural frequency falls outside the working range? b) after a first trial of an absorber using a mass of 35 kg, the amplitude of the oscillation was found to be 10 cm. what is the value of the rotating unbalance? c) using me-3.5 kg. m, find the optimal absorber (by minimizing its mass). what would be the amplitude of the oscillation of the absorber?
Answers: 3
You know the right answer?
Calculate the diffusion current density for the following carrier distributions. For electrons, use...

Questions in other subjects:

Konu
Mathematics, 13.02.2021 16:50
Konu
Physics, 13.02.2021 16:50