subject
Engineering, 07.04.2020 23:41 jfleming733

Water at 20 bar, 400oC enters a turbine operating at steady state and exits at 1.5 bar. Neglect heat transfer, kinetic energy and potential energy effects. Someone states that the vapor quality at the turbine exit is 98%. (a) (35%) Find the entropy generation based on this statement. (b) (5%) Is this statement possible?

ansver
Answers: 3

Other questions on the subject: Engineering

image
Engineering, 03.07.2019 14:10, bryneosburn
Line joining liquid phase with liquid and solid phase mixture is known as: a) liquidus b) solidus c) tie line d) none of the mentioned
Answers: 2
image
Engineering, 03.07.2019 14:10, volleyballfun24
If the thermal strain developed in polyimide film during deposition is given as 0.0044. assume room temperature is kept at 17.3 c, and thermal coefficient of expansion for the film and the substrate are 54 x 10^-6c^-1 and 3.3 x 10^-6c^-1respectively. calculate the deposition temperature.
Answers: 3
image
Engineering, 04.07.2019 18:10, danksans7011
The mass flow rate of the fluid remains constant in all steady flow process. a)- true b)- false
Answers: 1
image
Engineering, 04.07.2019 18:10, abdirahmansoloman
Air is to be cooled in the evaporator section of a refrigerator by passing it over a bank of 0.8-cm-outer-diameter and 0.4-m-long tubes inside which the refrigerant is evaporating at -20°c. air approaches the tube bank in the normal direction at 0°c and 1 atm with a mean velocity of 4 m/s. the tubes are arranged in-line with longitudinal and transverse pitches of sl- st 1.5 cm. there are 30 rows in the flow direction with 15 tubes in each row. determine (a) the refrigeration capacity of this system and (b) pressure drop across the tube bank. evaluate the air properties at an assumed mean temperature of -5°c and 1 atm. is this a good assumption?
Answers: 1
You know the right answer?
Water at 20 bar, 400oC enters a turbine operating at steady state and exits at 1.5 bar. Neglect heat...

Questions in other subjects:

Konu
Chemistry, 15.04.2021 01:50