subject
Engineering, 12.03.2020 23:03 allieballey0727

Write a program that determines the change given back to a customer in a self-service checkout machine of a supermarket for purchases of up to $50. The program generates a random number between 0.01 and 50.00 and displays the number as the amount to be paid. The program then asks the user to enter payment, which can be one $1 bill, one $5 bill, one $10 bill, one $20 bill, or one $50 bill. If the payment is less than the amount to be paid, an error message is displayed. If the payment is sufficient, the program calcu- lates the change and lists the bills and/or the coins that make up the change, which has to be composed of the least number each of bills and coins. For example, if the amount to be paid is $2.33 and a $10 bill is entered as pay- ment, then the change is one $5 bill, two $1 bills, two quarters, one dime, 2 9 one nickel, and two pennies. Execute the program three times.

ansver
Answers: 2

Other questions on the subject: Engineering

image
Engineering, 04.07.2019 18:10, siri5645
At 12 noon, the count in a bacteria culture was 400; at 4: 00 pm the count was 1200 let p(t) denote the bacteria cou population growth law. find: (a) an expression for the bacteria count at any time t (b) the bacteria count at 10 am. (c) the time required for the bacteria count to reach 1800.
Answers: 1
image
Engineering, 04.07.2019 18:10, Fahaddie
The thermal expansion or contraction of a given metal is a function of the f a)-density b)-initial temperature c)- temperature difference d)- linear coefficient of thermal expansion e)- final temperature f)- original length
Answers: 2
image
Engineering, 04.07.2019 18:10, redrosesxx
Water at 55c flows across a flat plate whose surface temperature is held constant at 95c. if the temperature gradient at the plate's surface for a given value of x is 18 c/mm, find a) local heat transfer coefficient. b) heat flux
Answers: 3
image
Engineering, 04.07.2019 18:10, caitlynnpatton1208
Water in a partially filled large tank is to be supplied to the roof top, which is 8 m above the water level in the tank, through a 2.2-cm-internal-diameter pipe by maintaining a constant air pressure of 300 kpa (gage) in the tank. if the head loss in the piping is 2 m of water, determine the discharge rate of the supply of water to the roof top in liters per second.
Answers: 3
You know the right answer?
Write a program that determines the change given back to a customer in a self-service checkout machi...

Questions in other subjects: