subject
Engineering, 05.03.2020 08:06 guccikathyyy6195

The deflection of a uniform beam subject to a linearly increasing distributed load can be computed as 120 E I L (−x5 + 2L2x3 − L4x) Given that L = 600 cm, E = 50,000 kN/cm2, I = 30,000 cm4, and 0 = 2.5 kN/cm, determine the point of maximum deflection (a) graphically, (b) using the golden-section search until the approximate error falls below εs = 1% with initial guesses of xl = 0 and xu = L.

ansver
Answers: 2

Other questions on the subject: Engineering

image
Engineering, 04.07.2019 18:10, heidiburgos1own6c0
Fluids at rest possess no flow energy. a)- true b)- false
Answers: 3
image
Engineering, 04.07.2019 18:10, bckyanne3
Afull journal bearing has a journal diameter of 27 mm, with a unilateral tolerance of -0.028 mm. the bushing bore has a diameter of 27.028 mm and a unilateral tolerance of 0.04 mm. the l/d ratio is 0.5. the load is 1.3 kn and the journal runs at 1200 rev/min. if the average viscosity is 50 mpa-s, find the minimum film thickness, the power loss, and the side flow for the minimum clearance assembly.
Answers: 1
image
Engineering, 04.07.2019 18:10, aaliyah80
The drive force for diffusion is 7 fick's first law can be used to solve the non-steady state diffusion. a)-true b)-false
Answers: 1
image
Engineering, 04.07.2019 18:10, leomessifanboy678
The filament of an incandescent lamp has a temperature of 2000k. calculate the fraction of radiation emitted in the visible light band if the filament is approximated as blackbody
Answers: 2
You know the right answer?
The deflection of a uniform beam subject to a linearly increasing distributed load can be computed a...

Questions in other subjects:

Konu
History, 04.03.2021 21:30