subject
Engineering, 12.02.2020 05:19 rhettperkins

A thin electrical heater is wrapped around the outer surface of a long cylindrical tube whose inner surface is maintained at a temperature of 6°C. The tube wall has inner and outer radii of 24 and 78 mm, respectively, and a thermal conductivity of 10 W/m ⋅ K. The thermal contact resistance between the heater and the outer surface of the tube (per unit length of the tube) is R′t, c = 0.01 m ⋅ K/W. The outer surface of the heater is exposed to a fluid with T[infinity] = −10°C and a convection coefficient of h = 100 W/m2 ⋅ K. Determine the heater power per unit length of tube required to maintain the heater at To = 25°C.

ansver
Answers: 1

Other questions on the subject: Engineering

image
Engineering, 04.07.2019 18:10, wyattlb97
Water at the rate of 1 kg/s is forced through a tube with a 2.5 cm inner diameter. the inlet water temperature is 15°c, and the outlet water temperature is 50°c. the tube wall temperature is 14°c higher than the local water temperature all along the length of the tube. what is the length of the tube?
Answers: 3
image
Engineering, 04.07.2019 18:20, cxttiemsp021
Atank with constant volume contains 2.27 kg of a mixture of water phases (liquid-vapor). in the initial state the temperature and the quality are 127 °c and 0.6, respectively. the mixture is heated until the temperature of 160 oc is reached. illustrate the process in a t-v diagram. then, determine (1) the mass of the vapor in kg at the initial state, (2) the final pressure in kpa.
Answers: 3
image
Engineering, 04.07.2019 19:10, ultimateapes
When subject to a steady load (within elastic range) over a long period of time, what is the major difference in material behavoir between steel and plastic?
Answers: 2
image
Engineering, 04.07.2019 19:20, rida10309
At steady state, air at 200 kpa, 325 k, and mass flow rate of 0.5 kg/s enters an insulated duct having differing inlet and exit cross-sectional areas. the inlet cross-sectional area is 6 cm2. at the duct exit, the pressure of the air is 100 kpa and the velocity is 250 m/s. neglecting potential energy effects and modeling air as an 1.008 kj/kg k, determine ideal gas with constant cp = (a) the velocity of the air at the inlet, in m/s. (b) the temperature of the air at the exit, in k. (c) the exit cross-sectional area, in cm2
Answers: 2
You know the right answer?
A thin electrical heater is wrapped around the outer surface of a long cylindrical tube whose inner...

Questions in other subjects:

Konu
Chemistry, 21.05.2020 22:09