subject
Engineering, 11.02.2020 02:26 angelasnipes51orfryq

In fully-developed laminar pipe flow, consider the rate of work done on an annulus of thickness dr (hint: consider, for each face of the annulus, rate of work = power = force × velocity).

(i) Find an expression for the power (per unit volume) dissipated by the flow in the fluid annulus, and show that it is equal to µ(du/dr)

(ii) By using u(r) from 3(ii) above, and integrating this expression, show that the power dissipated across a length of pipe is Q∆P

ansver
Answers: 1

Other questions on the subject: Engineering

image
Engineering, 04.07.2019 16:10, Arealbot
The force on a cutting tool are 2600n vertically downward and 2100 horizontal. determine the resultant force acting on the tool and the angle at which it acts.
Answers: 1
image
Engineering, 04.07.2019 18:10, keigleyhannah30
Aplate clutch has a single pair of mating friction surfaces 250-mm od by 175-mm id. the mean value of the coefficient of friction is 0.30, and the actuating force is 4 kn. a) find the maximum pressure and the torque capacity using the uniform-wear model. b) find the maximum pressure and the torque capacity using the uniform-pressure model.
Answers: 3
image
Engineering, 04.07.2019 18:10, oliviasoreo92
Compute the pressure drop of 30°c air flowing with a mean velocity of 8 m/s in a circular sheet-metal duct 300 mm in diameter and 15 m long. use a friction factor, f 0.02, and pair = 1.1644 kg/m a. 37.26 pa b. 25.27 pa n c. 29.34 pa d. 30.52 pa
Answers: 1
image
Engineering, 04.07.2019 18:20, kodyclancy
Aquick transition of the operating speed of a shaft from its critical speed will whirl amplitude. (a) increase (b) limit (c) not affect (d) zero
Answers: 2
You know the right answer?
In fully-developed laminar pipe flow, consider the rate of work done on an annulus of thickness dr (...

Questions in other subjects:

Konu
Mathematics, 21.04.2020 04:48