subject
Engineering, 06.12.2019 02:31 anannanekejdjd

Water is boiled at atmospheric pressure by a horizontal polished copper heating element of diameter d = 5 mm and emissivity ε = 0.05 immersed in water. if the surface temperature of the heating wire is 350°c, determine the rate of heat transfer from the wire to the water per unit length of the wire.

ansver
Answers: 3

Other questions on the subject: Engineering

image
Engineering, 04.07.2019 18:10, settasav9641
Abrake has a normal braking torque of 2.8 kip in and heat-dissipating cast-iron surfaces whose mass is 40 lbm. suppose a load is brought to rest in 8.0 s from an initial angular speed of 1600 rev/min using the normal braking torque; estimate the temperature rise of the heat dissipating surfaces.
Answers: 3
image
Engineering, 04.07.2019 18:10, kevin72836
Consider a large isothermal enclosure that is maintained at a uniform temperature of 2000 k. calculate the emissive power of the radiation that emerges from a small aperture on the enclosure surface. what is the wavelength ? , below which 10% of the emission is concentrated? what is the wavelength ? 2 above which 10% of the emission is concentrated? determine the wavelength at which maximum spectral emissive power occurs. what is the irradiation incident on a small object placed inside the enclosure?
Answers: 2
image
Engineering, 04.07.2019 18:10, colin774
The higher the astm grain size number, the finer the gran is. a)-true b)-false
Answers: 2
image
Engineering, 04.07.2019 18:10, Candi9697
A-mn has a cubic structure with a0 0.8931 nm and a density of 7.47 g/cm3. b-mn has a different cubic structure, with a0 0.6326 nm and a density of 7.26 g/cm3. the atomic weight of manganese is 54.938 g/mol and the atomic radius is 0.112 nm. determine the percent volume change that would occur if a-mn transforms to b-mn.
Answers: 2
You know the right answer?
Water is boiled at atmospheric pressure by a horizontal polished copper heating element of diameter...

Questions in other subjects:

Konu
Mathematics, 17.02.2021 08:00