subject
Engineering, 14.09.2019 05:30 izzyisawesome5232

An inventor proposes an engine that operates between the 27 deg c warm surface layer of the ocean and a 10 deg c layer a few meters down. the claim is that this engine can produce 100 kw at a flow of 20 kg/s. is this possible?

ansver
Answers: 3

Other questions on the subject: Engineering

image
Engineering, 03.07.2019 14:10, bryneosburn
Line joining liquid phase with liquid and solid phase mixture is known as: a) liquidus b) solidus c) tie line d) none of the mentioned
Answers: 2
image
Engineering, 04.07.2019 18:10, ahmedeldyame
Aloaded platform of total mass 500 kg is supported by a dashpot and by a set of springs of effective stiffness 72 kn/m. it is observed that when the platform is depressed through a distance x = 12.5 cm below its equilibrium position and then released without any initial velocity; it reaches its equilibrium position in the shortest possible time without overshoot. find the position and velocity of the loaded platform 0.10 sec. after its release. if a further load of 400 kg is added to the platform, find, i) the frequency of damped vibrations, and i) the amplitude of vibration after 2 complete oscillations, given that the initial amplitude is 15 cm.
Answers: 1
image
Engineering, 04.07.2019 18:10, leomessifanboy678
The filament of an incandescent lamp has a temperature of 2000k. calculate the fraction of radiation emitted in the visible light band if the filament is approximated as blackbody
Answers: 2
image
Engineering, 04.07.2019 18:20, hayleymckee
Steam enters a converging nozzle at 3.0 mpa and 500°c with a at 1.8 mpa. for a nozzle exit area of 32 cm2, determine the exit velocity, mass flow rate, and exit mach number if the nozzle: negligible velocity, and it exits (a) is isentropic (b) has an efficiency of 94 percent
Answers: 2
You know the right answer?
An inventor proposes an engine that operates between the 27 deg c warm surface layer of the ocean an...

Questions in other subjects:

Konu
Computers and Technology, 27.09.2021 23:20