subject
Engineering, 03.07.2019 15:10 breannaasmith1122

Two flowing streams of argon gas are adiabatically mixed to form a single flow/stream. one stream is 1.5 kg/s at 400 kpa and 200 c while the second stream is 2kg/s at 500 kpa and 100 ? . it is stated that the exit state of the mixed single flow of argon gas is 150 c and 300 kpa. assuming there is no work output or input during the mixing process, does this process violate either the first or the second law or both? explain and state all your assumptions.

ansver
Answers: 1

Other questions on the subject: Engineering

image
Engineering, 03.07.2019 14:10, cowgyrlup124
Explain the difference laminar and turbulent flow. explain it with the shear stress and the velocity profiles.
Answers: 1
image
Engineering, 03.07.2019 14:10, kayabwaller4589
When at a point two solid phase changes to one solid phase on cooling then it is known as a) eutectoid point b) eutectic point c) peritectic point d) peritectoid point
Answers: 3
image
Engineering, 04.07.2019 18:20, rocio5649
Amixture of slurry and mud is to be pumped through a horizontal pipe of diameter 500 mm. the fluid behaves as a bingham plastic with a yield stress of 30 pa and viscosity 0.04 pa. s. describe the effects of the shear stress through a transverse section of the pipe by plotting the variation in shear stress and velocity profile: (i) just before the slurry starts to move (ii) as the slurry flows when the pressure gradient is double that in part (i)
Answers: 3
image
Engineering, 04.07.2019 19:20, horsedoggal1234
Consider airflow over a flat plate of length l = 1.5 m under conditions for which transition occurs at le = 0.9 m based on the critical reynolds number, re, e = 5 x 10. evaluating the thermophysical properties of air at 400 k, determine the air velocity. (hint: use the tables to find the properties of air)
Answers: 3
You know the right answer?
Two flowing streams of argon gas are adiabatically mixed to form a single flow/stream. one stream is...

Questions in other subjects:

Konu
Mathematics, 04.07.2019 05:30